US ERA ARCHIVE DOCUMENT

Dynamic Management of Prescribed Burning for Better Air Quality

RD-83521701

Talat Odman Georgia Institute of Technology

EPA STAR "Dynamic Air Quality Management" Kick-Off November 8, 2007

Performers

Dr. Talat Odman

Georgia Institute of Technology PI; PB/AQ modeling

Dr. Michael Chang

Georgia Institute of Technology Co-PI; AQ management

Dr. Yongtao Hu

Georgia Institute of Technology Co-PI; AQ modeling

Mr. Kenneth Wilt

Georgia Forestry Commission Co-PI; PB management

Dr. Di Tian

Georgia Environmental Protection Division Co-PI; AQ management

Problem Statement

- One of the most promising emission sources to address through dynamic management is prescribed burning (PB).
- PB is required for important ecological and safety concerns. 8 million acres of land in the Southeastern U.S. and 1 million acres in Georgia are treated with PB.
- PB is listed as the 3^{rd} largest source of PM_{2.5} emissions nationwide accounting for 12% of the total. This rank is expected to go up in the future.
- PB can significantly impact air quality (AQ) in neighboring urban areas, contributing both to primary and secondary $PM_{2.5}$ as well as to O_3 .
- Ecological reliance on PB combined with increased AQ pressure due to tighter regulatory constraints necessitates better management of PB operations.

Technical Objective

- To develop a dynamic AQ/PB management system that can not only moderate the potential impacts of PB on AQ, but also moderate AQ constraints that now limit PB.
 - Develop an AQ impact prediction system for the impacts of PB
 - Evaluate the forecasting accuracy of the system
 - Investigate how the system could be used in operational capacity
 - Assess the benefits of the system in AQ and PB management.

Hi-Res: forecasting ozone and $PM_{2.5}$ at a 4-km resolution for metro areas in Georgia

Hi-Res Forecast Products

- > "Single Value" Report: tomorrow's AQI, ozone and PM_{2.5} by metro area in Georgia
- \triangleright Air Quality Forecasts: AQI, ozone and PM_{2.5}, 48-hrs spatial plots and station profiles
- ➤ Meteorological Forecasts: precipitation, temperature and winds, 48-hrs spatial plots and station profiles
- > Performance Evaluation: time series comparison and scatter plots for the previous day

Snapshots from Hi-Res homepage: http://forecast.ce.gatech.edu

A New Model for SOA (Baek et al., 2011)

Included processes:

- •SOA partitioned from oxidation of VOCs (8 SVOCs)
- •From monoterpenes (2 SVOCs)
- •From isoprene (2 SVOCs added)
- •From sesquiterpenes (1 SVOC added, gas phase oxidation reactions added for α -caryphyllene, β -humulene, and other sesquiterpenes)
- •Aging of all semi-volatile organic compounds (SVOCs) added

HSVOC $\stackrel{+OH,+O3}{\longrightarrow}$ LSVOC $\stackrel{+OH,+O3}{\longrightarrow}$ SOA

$PM_{2.5}$

In 2009, $PM_{2.5}$ forecasts improved primarily due to the new SOA model.

Forecasting Capabilities

• In addition to concentrations we can forecast impacts of specific emission sources.

Sensitivity vs. Response

• Sensitivity is the change in pollutant concentration due to change in some parameter of interest (e.g., emissions).

$$S_{ij}^{(1)}(x,t) = \frac{\partial C_i(x,t)}{\partial p_j}$$

Response can be approximated as:

$$\Delta C_i \approx S_{ij}^{(1)} \Delta p_j$$

DDM-3D in CMAQ

- Community Multiscale Air Quality Model (CMAQ) solves the Atmospheric Diffusion Equation (ADE)
- Sensitivity equations were derived by taking the derivatives of ADE

$$\frac{\partial C_{i}}{\partial t} = -\nabla(uC_{i}) + \nabla(K\nabla C_{i}) + R_{i} + E_{i}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$\frac{\partial S_{i,j}}{\partial t} = -\nabla(uS_{i})_{j} + \nabla(K\nabla S_{i})_{j} + JS_{i,j} + \delta_{i,k}$$

- DDM solves the sensitivity equations simultaneously
- There are computational savings due to similarity of the equations

Estimation of PB Emissions

- CONSUME 3.0 calculates the amount of fuel consumption under different fire conditions.
- Emission Factors (EF) are available from field and/or laboratory studies.
- Emissions = Consumption × EF

Prescribed Burn Plumes

• PB plumes cannot be simply characterized as ground-level sources, industrial stacks, or with any other simple plume rise algorithm.

Daysmoke Plume Dispersion Model

 Daysmoke is an empirical plume rise/dispersion model designed for PB plumes.

• We use Daysmoke to inject PB plumes into CMAQ.

Diagnostic Evaluation of Models

Predicting regional smoke impacts depends on the ability to predict:

- Emissions (amount and timing)
- Injection height (plume vs. PBL)
- Winds (speed and direction)

GFC Permit Tracking System

• Location, acreage, burn type, start and end times of PBs are stored and displayed for each issued permit.

Georgia Institute of Technology

Technical Approach

Development of PB Impact Forecasting System

- 1. Burn permit database query
- 2. Emission estimation
- 3. AQ impact forecast
- 4. Interpretation of forecast

Evaluation of PB Impact Forecasting System

Investigation and Assessment of Management Options

Permit Database Query

Challenge: No a priori knowledge of who will burn next day **Approach:**

- Search GFC burn permit database for submitted plans and previous burning patterns (frequency and last occurrence) to determine likely burners
- Extract location, acreage, fuel type and fuel load information for each potential burner
- Fuel loads can be estimated based on growth type and time since last burn. Alternatively, fuel loads can be obtained from:
 - National Fire Danger Rating System (NFDRS) fuel maps
 - Fuel Characteristic Classification System (FCCS) fuelbed maps
 - MODIS (Moderate Resolution Imaging Spectroradiometer)
 Normalized Difference Vegetation Index (NDVI) maps

Emissions & AQ Impacts

- Estimate fuel consumption using CONSUME 3.0
- Estimate emissions using EFs for southeastern fuels
- For large burns, use Fire Emissions Production Simulator (FEPS) to estimate hourly distribution of emissions
- Compute vertical distribution of emissions using Daysmoke
- Update Hi-Res forecasting system components
 - CMAQ 5.0 is available now
- Start forecasting impacts of PB emissions on PM_{2.5} and O₃
 - DDM-3D (with 1st-order sensitivities) will be available soon
- Investigate if ~20 sensitivities can be computed simultaneously
 - emissions by fire district or pilot county
 - below/above PBL height

Interpretation of Forecast

- Impact forecast results will be in the form of change in air quality (e.g., ΔO_3 in ppm and $\Delta PM_{2.5}$ in μg m⁻³) per ton of nominal PB emissions.
- To be useful in management, these results need to be converted from "per tons" to "per acres" at a particular location.
- Recall that emissions from all "likely-to-burn" lands in the same district or county were lumped together for the impact forecast. However, not all "acres" in that district or county are the same.
- Conversion must be made considering the spatial variation of all impact relevant factors such as fuel types, fuel loads, size of the burn, ignition method, etc.

Evaluation of Forecasts

- Look out for possible PB impacts at state monitors reporting elevated pollutant concentrations.
 - Use satellite products (text, imagery, and analysis) from NOAA
 Satellite and Info. Service as well as interactive fire location maps and plume trajectories from SMARTFIRE to confirm PB impact.
- Select some of these instances for case studies. Simulate each case with impact prediction system in a forecasting mode.
- Analyze simulation results and evaluate prediction accuracy by comparing simulated concentrations and PB impacts, respectively, with observed concentrations and inferred impacts, by comparison to nearby monitors that are not impacted.
- Perform diagnostic evaluations to understand if agreement between simulation and observations is because of the right reasons and, in case of disagreement, to determine ways of improving the forecasting methods.

Investigation and Assessment of Management Options

- We will work with AQ managers at GA EPD and PB managers at GFC to develop a draft protocol for utilizing the PB impact forecasts as a tool to minimize poor AQ and maximize PB activity.
- We will assess the differences between PB permit decisions made with and without the new information (i.e. air quality and impact forecast).
 - This will be done for incidence day as well as good AQ days.
 - PB emissions will be estimated using both sets of decision and AQ will be simulated.
 - The difference in simulated air quality levels will be attributed to utilizing the impact prediction system.
 - The change in burn capacity will also be assessed.

Overall Project Plan

Task	Year-1			Year-2			Year-3					
1) Development of PB Impact Forecasting system												
2) Evaluation of PB Impact Forecasting System												
3) Investigation and Assessment of Management Options												

Expected Results & Outcomes

- Increased accuracy of air quality forecasts: Missed exceedances because of PB impacts will be avoided
- Ability to manage burning in real time while accounting for predicted impacts on air quality
- Ability to develop best-practice burning protocols
- Ability to quantify the benefit of dynamic PB management on air quality
- Guidance on how much PB can be done on each day for each county